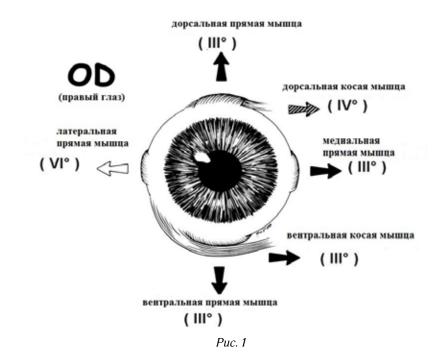
В. А. Нестерчук

магистр ветеринарной медицины,

член европейского общества ветеринарных офтальмологов (ESVO), г. Киев

ОСНОВЫ ПРОВЕДЕНИЯ НЕЙРООФТАЛЬМОЛОГИЧЕСКОГО ОСМОТРА

1. Нейроофтальмология – что это такое?


Нейроофтальмология — раздел ветеринарии, который занимается изучением неврологических причин нарушения функционирования зрительного анализатора, а также их коррекцией. Однако для понимания данной области ветеринарии важными являются знания не только неврологии и офтальмологии, но и таких дисциплин, как анатомия, хирургия, физиология, фармакология.

Нейроофтальмологическое обследование является обязательным для всех неврологических больных, поскольку дает возможность оценить как поражение центральной нервной системы в целом, так и локализировать конкретно пораженную область.

2. Немного неврологии

В нормальную работу глаза и его придатков вовлечены такие черепные (или черепномозговые) нервы (ЧН):

- Зрительный нерв (n. opticus) вторая пара черепных нервов (ЧН II) – участвует в проведении сигнала от сетчатки к центральной нервной системе.
- Глазодвигательный нерв (п. oculomotorius) третья пара черепных нервов (ЧН III) иннервирует четыре экстраокулярные мышцы (дорсальную, медиальную, вентральную прямую и вентральную косую), а также подниматель век. Кроме того, проводит парасимпатическую иннервацию сфинктера радужной оболочки.
- Блоковый нерв (n. trochlearis) четвертая пара черепных нервов (ЧН IV) – иннервирует дорсальную косую мышцу.
- Тройничный нерв (n. trigeminus) пятая пара черепных нервов (ЧН V) – офтальмологическая и верхнечелюстная ветви участвуют в иннервации глаза и придаточного

аппарата, включая роговицу, конъюнктиву, слезную железу и участки кожи вокруг глаз.

- Отводящий нерв (n. abducens) шестая пара черепных нервов (ЧН VI) – иннервирует латеральную прямую мышцу и подтягиватель глазного яблока.
- Лицевой нерв (n. facialis) седьмая пара черепных нервов (ЧН VII) – иннервирует мышцы век.
- Преддверно-улитковый нерв (n. vestibulocochlearis) восьмая пара черепных нервов (ЧН VIII) принимает участие в вестибулоокулярном рефлексе.

2. Нейроофтальмологический осмотр

2.1. Дистанционное обследование

Информация, которая собирается при дистанционном обследовании, должна включать: вид и размеры пациента, окрас шерсти, оценку характера животного, положение тела и головы, способность ориентироваться в пространстве, признаки нарушения зрительной функции, положение глаз (нистагм, страбизм). Все эти данные могут быть важны в постановке окончательного диагноза.

Итак, остановимся на отдельных симптомах.

Таблица. Направление страбизма в результате унилатеральной деиннервации экстраокулярных мышц

Черепные нервы или пораженное ядро	Направление страбизма
ЧН III, ядро черепного нерва III	Ипсилатерально, вентролатерально + птоз
ЧНIV	Ипсилатерально, поворот кнаружи
Унилатерально, ядро ЧН IV	Контрлатерально, поворот кнаружи
ЧН VI, ядро ЧН VI	Ипсилатерально, медиально

Нистагм

Нистагм может быть описан как ритмическое, непроизвольное движение глазами. Разделяют физиологический нистагм, вызванный проблемами фокусировки на объекте (например, при сходящемся страбизме), и патологический, связанный с поражением ЦНС. Нистагм может быть маятникообразным (из стороны в сторону) и может представлять патологию зрительных путей (иногда бывает у сиамских кошек). Движения глаз при нистагме могут быть направлены только в одну, определенную, сторону, например, левосторонний нистагм - это быстрое неконтролированное движение глаз в левую сторону.

Спонтанный патологический нистагм также представляет патологию вестибулярной системы и является результатом асимметрического вхождения движущего ядра краниального нерва, ответственного за контроль экстраокулярных мышц (рис. 1).

Страбизм

Вовлечение в патологический процесс экстраокулярных мышц приводит к косоглазию (страбизму). Это может быть результатом вестибулярных болезней, вследствие которых поражаются ЧН III, IV, VI. Это ярко проявляется при наклонах головы пациента в разные стороны (таблица).

Анизокория и размер зрачка

Является важным симптомом при нейроофтальмологическом обследовании. Присутствие анизокории должно оцениваться совместно с рефлексом зрачка, тестами с препятствием и анамнестическими данными. Во время обследования величину и форму зрачка оценивают как в помещении с ярким освещением, так и с приглушенным светом.

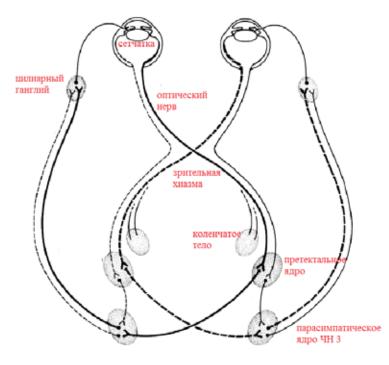
У домашних животных существует две мышцы-антагониста, от которых зависит размер, форма и реакция зрачка на свет: дилататор и сфинктер. Дилататор зрачка состоит из гладких мускульных волокон, которые распределены по всему радиусу радужки, и отвечает за расширение зрачка. Сфинктер сужает зрачок и расположен близко к краю радужной оболочки. Парасимпатическая

нервная система вызывает сужение зрачка, в то время как симпатическая – расширение. Этот обстоятельство указывает на то что скорость изменения величины зрачка, а соответственно и фокусировки на объекте зависит от согласованности функционирования систем, иннервирующих данные мышцы, — симпатической и парасимпатической.

2.2. Рефлексы Рефлекс зрачка (PLR)

Рефлекс зрачка — реакция зрачка на стимуляцию сетчатки ярким источником света. В результате данного воздействия в норме наблюдается сужение зрачка на световой раздражитель (прямой рефлекс), а также одновременное сужение зрачка второго глаза (согласованный рефлекс). У щенков и котят PLR появляется сразу после открытия глаз, хотя до 28 дней может быть несколько снижен.

Афферентный путь данного рефлекса проходит через зрительный нерв (ЧН II), далее через зрительную хиазму к билатеральным синапсам претектального ядра. Поскольку нейроны каждого претектального ядра посылают импульс парасимпатическому ядру билатерально, оба зрачка будут сужаться. Далее импульс следует к сфинктеру радужки, проходя цилиарный ганглий. Поскольку


путь зрачкового рефлекса содержит два пересечения, одно — в области хиазмы, второе — претектального ядра, у большинства видов животных прямой рефлекс сильнее непрямого (согласованного). В отличие от животных у людей сила обоих видов рефлекса одинакова (рис. 2).

Тест с «бегающим» фонариком

У здоровых животных быстрое перемещение светящего фонарика от одного глаза к другому должно вызывать неполное сужение второго зрачка. Если присутствует заболевание сетчатки или диска зрительного нерва во втором глазу, свечение в этот глаз вызовет расширение зрачка. Такое состояние считается положительным для данного теста и является патогномоническим симптомом, указывающим на унилатеральное поражение сетчатки или унилатеральное заболевание зрительного нерва.

Тест на ослепление

Если зрачковый рефлекс не может быть диагностирован из-за отека роговицы или по другим причинам, с помощью рефлекса ослепления может быть определена локализация поражения. Он проводится с помощью яркого источника света, который направляется в темпоральную

Puc. 2

зону сетчатки, это вызывает немедленное моргание. Поскольку данный рефлекс является субкортикальным, он может присутствовать даже у слепых животных. Ответ на этот рефлекс вовлекает ЧН II, верхний холмик (Colliculus rostralis) и ЧН VII. Поэтому он будет присутствовать у слепых животных с церебро-кортикальным поражением, но отсутствовать у слепых пациентов с субкортикальным поражением.

Рефлекс угрозы

Производится при помощи угрожающего движения руки по направлению к глазу. Важно помнить и не допускать касания век или роговицы. Ответ на данный рефлекс предполагает моргание, с подтягиванием глаза или поворотом головы. Также нужно помнить, что данный рефлекс может отсутствовать у щенков и котят до 4-недельного возраста.

Если моргание не произошло, животное необходимо обследовать на предмет поражения лицевого нерва и церебральных поражений.

Пальпебральный рефлекс


Данный рефлекс вызывается касанием латерального и медиального канта глаза. Ожидаемый эффект – моргание. Афферентная часть проводимости затрагивает тройничный нерв (ЧН V), точнее его глазную и верхнечелюстную ветви. Эфферентный путь проходит через лицевой нерв (ЧН VII). Известно, что пальпебральный рефлекс присутствует не ранее чем через 2–4 дня после рождения у щенков, и 1–3 дня у котят.

Роговичный (корнеальный) рефлекс

Вызывается прикасанием к роговице ватной палочки или другого малотравматичного предмета. Рефлекс считается положительным при моргании животного в момент прикосновения. Афферентный путь этого рефлекса проходит через тройничный нерв (ЧН V), а эфферентный — через лицевой (ЧН VII).

Вестибулоокулярный рефлекс и физиологический нистагм

Данный рефлекс проявляется в стабилизации картинки во время движения головы. Без данного рефлекса изображение кажется

Puc. 3

размытым. Этот рефлекс является результатом быстрого движения глаз в направлении, противоположном движению головы.

Первичный афферентный нейрон вестибулярного ганглия находится во внутреннем слуховом проходе (ЧН VII).

Для присутствия вестибулоокулярного рефлекса и физиологического нистагма требуется целостность центральной и периферической нервной системы с функциональными ЧН III, IV, VI.

В результате односторонней периферической вестибулярной болезни быстрая фаза нистагма будет к стороне, противоположной стороне поражения. Важно отметить, что патологической нистагм не может присутствовать у пациентов с подострой или хронической односторонней вестибулярной болезнью. Отметим также, что у пациентов, имеющих двустороннюю вестибулярную болезнь, как физиологический, так и патологический нистагм, отсутствуют.

2.3. Тесты на зрение Тест с препятствием

Для проведения этого теста животное помещают в незнакомую среду, где ему разрешают свободно перемещаться. В помещении в случайном порядке раскладываются предметы, об которые животное с хорошим зрением не должно спотыкаться. Тест проводят как с хорошей освещенностью, так и при

сумеречном свете. Пациенты, у которых подозревается гемиопия (дефект поля зрения, наблюдаемый на каждом глазу только в одной половине поля), тест проводят с поочередно завязанными глазами. Врач, осуществляющий исследование, внимательно следит и оценивает поведение животного, характер передвижения (неуверенность, осторожность), столкновения с препятствиями и т. п. Если данные симптомы повторяются неоднократно, есть основания предполагать, что животное имеет проблемы со зрением.

Визуальное восприятие

Животное с небольшой массой тела, поддерживая в области груди и живота, поднимают и подносят к ровной твердой поверхности. Важным моментом является то, чтобы животное видело эту поверхность. Нормальной реакцией считается стремление животного поставить конечность на поверхность. Также важно, чтобы животное не прикасалось к поверхности, а действовало исключительно с помощью зрения. Слепые животные, без признаков неврологических заболеваний, стараются встать на поверхность только после контакта с ней.

2.4. Тест Ширмера

Не является традиционным для нейроофтальмологического обследования. Помогает оценить парасимпатическую иннервацию. Ранее

был описан в статье (см. журнал «Мир ветеринарии» № 1, 2013).

2.5. Фармакологическое исследование вегетативной нервной системы

Для оценки преганглионарного или постганглионарного поражений используют следующие препараты.

• Поражение парасимпатической иннервации

Непрямые парасимпатомиметики (физостигмин 0,5%-й). Эта группа препаратов требует неповрежденных постганглионарных нейронов, для того чтобы вызвать миоз. Препарат усиливает действие эндогенного ацетилхолина (блокируя ацетилхолинэстеразу — фермент, разрушающий этот медиатор) в нейромышечных соединениях постганглионарных парасимпатических нейронов.

Парасимпатические препараты прямого действия (пилокарпин 2%-й). Данные препараты действуют на сфинктер радужной оболочки, связывая ацетилхолиновые рецепторы. Данный препарат оказывает миотическое действие как при преганглионарном, так и при постганглионарном поражении (рис. 3).

Капля 0,5%-го физостигмина вызывает быстрое сужение зрачка. Это происходит при преганглионарном нервном поражении. В нормальном глазе зрачок суживается более медленно, примерно за 40–60 минут. Если миоз не наступает после введения физостигмина, эпибульбарно вводят 2 капли 2%-го пилокарпина. Быстрое и сильное сужение зрачка указывает на постганглионарное поражение. Промежуток между применением прямых и непрямых парасимпатомиметиков должен составлять 24 часа.

 Поражение симпатической иннервашии

Симпатомиметики непрямого действия (гидроксимпатамин 1%-й, тропикамид). Данные препараты вызывают высвобождение норадреналина с постганглионарных нейронов. Если поражение локализируется в центральных частях (гипаталамоспинальных) симпатических путей или в месте преганглионарных нейронов, зрачок будет расширяться быстро и полностью. Если поражение захватывает постганглионарный нейрон, зрачок расширится не полностью или останется не расширенным.

Puc. 4

Симпатомиметики прямого действия (эпинефрин 0,001%-й). Данный тест выявляет поражение постганглионарного нейрона, который в свою очередь несет гиперчувствительную деиннервацию дилататора радужной оболочки. Чувствительные мышцы будут реагировать на низкие дозы препарата, на которые не реагировали бы в норме.

Данный препарат широко используется при синдроме Горнера, помогая локализировать поражение. Инстилляция 10%-го фенилэфрина вызывает расширение зрачка через 60–90 мин при поражении нейрона первого порядка, через 20–60 мин — второго порядка, и в течение 20 мин — при поражении нейрона третьего порядка (рис. 4).

Заключение

Несомненно, существует масса нюансов в проведении подобного обследования, интерпретации его результатов, но знания и регулярное практическое проведение нейроофтальмологического обследования поможет понять истинную причину недуга пациента!

Литература:

- Simon Petersen-Jones, Sheila Crispin BSAVA Manual of Small Animal Ophthalmology, second edition, British Small Animal Veterinary Association.
 2002
- David J. Maggs, Paul E. Miller, Ron Ofri Slatter's Fundamentals of , Veterinary Ophthalmology, fourth edition, Saunders Elsevier. 2008.
- Kirk N. Gelatt, Brain C. Gilger, Thomas J.Kern:. Veterinary Ophthalmology, fifth edition, Wiley-Blackwell. 2013.
- 4. Michael D. .Lorenz, Joan R.. Coates, Marc Kent.: Handbook of Veterinary neurology, fifth edition ,Saunders Elsevier. 2011.
- Klaus-Dieter Budras, Patrick H, McCarthy, Wolfgang Fricke, Renate Richter: Anatomy of the Dog, fifth edition, Hannover 2007.